Verallgemeinert:
a·x^2 + b·c + c
= a·(x^2 + b/a·x) + c
= a·(x^2 + b/a·x + (b/(2·a))^2 - (b/(2·a))^2) + c
= a·(x^2 + b/a·x + (b/(2·a))^2) + c - b^2/(4·a)
= a·(x + b/(2·a))^2 + c - b^2/(4·a)
Scheitel:
S( - b/(2·a) | c - b^2/(4·a) )
Verallgemeinert:
a·x^2 + b·c + c
= a·(x^2 + b/a·x) + c
= a·(x^2 + b/a·x + (b/(2·a))^2 - (b/(2·a))^2) + c
= a·(x^2 + b/a·x + (b/(2·a))^2) + c - b^2/(4·a)
= a·(x + b/(2·a))^2 + c - b^2/(4·a)
Scheitel:
S( - b/(2·a) | c - b^2/(4·a) )